
#Batch Commit/Restart Version Date:7/1/2005

INFORMATION MANAGEMENT SERVICE (IMS)

 Checkpoint / Restart Scenario

HERE’S THE SCENARIO:

Suppose, a batch program that basically reads an input file and posts the updates/inserts/deletes to DB2

tables in the database was abended before the end of the job because of some reasons; Is it possible to tell -

How many input records were processed? Were any of the updates committed to the database or can the

job be started from the beginning?

Assume that COMMIT logic was not coded for large batch jobs that process millions of records. If an

ABEND occurs all database updates will be rolled back and the job can be resubmitted from the beginning.

If an ABEND occurs near the end of the process, the rollback of all the updates is performed. Also, DB2

will maintain a large number of locks for a long period of time, reducing concurrency in the system. In

fact, the program may ABEND if it tries to acquire more than the installation-defined maximum number of

locks.

Program without COMMIT logic causes excessive locking in BASE SYSPLEX and PARALLEL

SYSPLEX causes excessive consumption of memory. This can no longer continue if DATASHARING

for DB2 is to provide workload balancing. These applications will cause the COUPLING facility to be

over committed with large number of locks and huge storage requirements.

To avoid the above difficulties COMMIT-RESTART LOGIC is recommended for all the batch programs

performing updates/inserts/deletes.

This involves setting up a batch-restart control table (CHECKPOINT_RESTART in our case) to store the

last input record processed and other control information. The restart control table can also be used as an

instrumentation table to control the execution, commit frequency, locking protocol and termination of

batch jobs.

One of the problems with restart is synchronizing DB2 tables and output files. DB2 will rollback all work

on DB2 tables to the last commit point; but for output files we have to delete all the records up to the last

commit point. (One option to do this would be via a global temporary table, FILE_POSITION_GTT, See

FILE REPOSITIONING section for further details.).

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 1

#Batch Commit/Restart	 Version Date:7/1/2005

COMMIT Function:

The COMMIT statement ends a unit of recovery and commits the relational database changes that were

made in that unit of recovery. If relational databases are the only recoverable resources used by the

application process, COMMIT also ends the unit of work. The unit of recovery in which the statement is

executed is ended and a new unit of recovery is effectively started for the process. All changes made by

ALTER, COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL ON,

RENAME, REVOKE and UPDATE statements executed during the unit of recovery are committed.

SQL connections are ended when any of the following apply:
¬ The connection is in the release pending state
¬ The connection is not in the release pending state but it is a remote connection and:

⇒ The DISCONNECT(AUTOMATIC) bind option is in effect, or
⇒ 	 The DISCONNECT (CONDITIONAL) bind option is in effect and an open WITH

HOLD cursor is not associated with the connection.
 For existing connections,

ß All open cursors that were declared without the WITH HOLD option are closed.

ß All open cursors that were declared with the WITH HOLD option are preserved, along with

any SELECT statements that were prepared for those cursors.

ß All other prepared statements are destroyed unless dynamic caching is enabled.

ß If dynamic caching is enabled, then all prepared SELECT, INSERT, UPDATE and

DELETE statements that are bound with KEEPDYNAMIC (YES) are kept past the commit.

Prepared statements cannot be kept past a commit if:
♦ SQL RELEASE has been issued for that site, or
♦ Bind option DISCONNECT(AUTOMATIC) was used, or

♦ Bind option DISCONNECT (CONDITIONAL) was used and there are no

hold cursors.

ß All implicitly acquired locks are released, except for those required for the cursors that were

not closed.

ß All rows of every global temporary table of the application process are deleted.

ß All rows of global temporary tables are not deleted if any program in the application process

has open WITH HOLD cursor that is dependent on that temporary table.

♦ In addition, if RELEASE (COMMIT) is in effect, the logical work files for those
temporary tables whose rows are deleted are also deleted.

CHECKPOINT/RESTART LOGIC:

To allow the interrupted program to be restarted from the last unit of recovery (COMMIT) or at a point

other than the beginning of the program we should have a Checkpoint/restart logic. Basically, we need:

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 2

#Batch Commit/Restart	 Version Date:7/1/2005

• 	 A place to store the details (CHECKPOINT-COMMIT record) pertaining to the current execution of

the program, like various counts (number of inserts/deletes/updates/selects), number of records

processed, processing dates, and other details which are needed in the program after a RESTART.

• 	 A reliable FILE RE-POSITIONING logic with minimal changes to the existing PROCJCL.

• 	 Flexibility, to modify the commit frequency without changing the program code.

Where we can store this CHECKPOINT-COMMIT record?
We can store the CHECKPOINT-COMMIT record, COMMIT-FREQUENCY and other relevant

information in a DB2 table .

CHECKPOINT_RESTART TABLE DESCRIPTION:

database Tablename tablespace Dclgen
DBMPDBII CHECKPOINT_RESTART DBMTS002 DBMDG002

(MAXROW=1

COLUMN
NAME

DCLGEN NAME SIZE DESCRIPTION

PROGRAM_NAM
E

PROGRAM-NAME X(08) Program name to identify

CALL_TYPE CALL-TYPE X(04) Not used
CHECKPOINT_I CHECKPOINT-ID X(08) Not used
D
RESTART_IND RESTART-IND X(01) Indicate that pgm needs to be restarted
RUN_TYPE RUN-TYPE X(01) Prime time or not
COMMIT_FREQ COMMIT-FREQ S9(9) COMP No. of records intervals to commit
COMMIT_SECO COMMIT-SECONDS S9(9) COMP No. of seconds intervals to commit
NDS
COMMIT_TIME COMMIT-TIME X(26) Update Timestamp
SAVE_AREA SAVE-AREA-LEN S9(4) COMP Length of Commit record Save Area

SAVE-AREA-TEXT X(4006) Commit record Save Area

FILE RE-POSITIONING:

At restart, all records written to the output file since the last commit will have to be removed. To

accomplish this, FILE_POSITION_GTT global temporary table is used.

SQL statements that use global temporary tables can run faster because:

U DB2 does not log changes to global temporary tables
U Global temporary tables do not experience lock contention
U DB2 creates an instance of the temp table for OPEN/SELECT/INSERT/DELETE stmts. only
U An instance of a temporary table exists at the current server until one of the following actions

occur:
• 	 The remove server connection under which the instance was created terminates
• 	 The unit of work under which the instance was created completes.

For ROLLBACK stmt, DB2 deletes the instance of the temporary table.
For COMMIT stmt, DB2 deletes the instance of the temporary table unless a
cursor for accessing the temporary table is defined WITH HOLD and is open.

• 	 The application process ends.

File re-positioning Logic:

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 3

#Batch Commit/Restart Version Date:7/1/2005

Â Open the output file in INPUT mode
Â INSERT all records from the output file to FILE_POSITION_GTT global temp table until the

last record which was written at the time of last commit
Â Close the output file
Â Open the output file in OUTPUT mode
Â FETCH all rows from the FILE_POSITION_GTT global temp table and write into output file
Â In the Next commit, FILE_POSITION_GTT global temp table will be deleted automatically.

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 4

#Batch Commit/Restart	 Version Date:7/1/2005

FILE_POSITION_GTT Global Temp Table:

Database tablename tablespace Dclgen
DSNDB06 FILE_POSITION_GTT SYSPKAGE DSNDG006

COLUMN NAME DCLGEN NAME SIZE DESCRIPTION
RECORD_NUMBER FPG-RECORD-NUMBER S9(9) COMP Record number
RECORD_DETAIL FPG-RECORD-DETAIL-LEN S9(4) COMP Output file length

FPG-RECORD-DETAIL-TEXT X(4000) Output file record information

CHECKPOINT/RESTART Implementation:

STEP1:	 Create the CHECKPOINT-COMMIT record in the working storage section, to store
the data, which is needed for the next unit of recovery.

STEP2:	 In the procedure division MAIN para:
First check the restart status flag i.e. RESTART-IND of CHECKPOINT_RESTART
table.
If RESTART-IND = ‘N’ then
 if any output file exists open output file in OUTPUT mode
 start the normal process

end

If RESTART-IND = ‘Y’ then

 Move the SAVE-AREA information to CHECKPOINT-COMMIT record
if any output file exists

do the FILE REPOSITION:
 Open the output file in INPUT mode.

Repeatedly
 Read the output record and INSERT it into GLOBAL temp table

FILE_POSITION_GTT
Until the last unit of recovery write count.
Close the output file.

 Open the output file in OUTPUT mode.
open a cursor for a table FILE_POSITION_GTT

 repeatedly fetch a cursor and write the record information into the output file
 until end of cursor

 close a cursor
end

 If input for the program is from cursor then skip the rows until COMMIT-KEY.

 If input for the program is from file then skip the records until COMMIT-KEY.

End.

Note: For more than one output files, delete GTT after repositioning each output file.

STEP3:	 Make a count for each Insert’s/Update’s/Deletes in RECORDS-PROCESSED-
UOR variable.

STEP4:	 Go thro’ the logic and find out the appropriate place where COMMIT WORK can be
hosted.
There check the frequency of COMMITS:
IF RECORDS-PROCESSED-UOR > COMMIT-FREQ
 KEY (input) value of the program TO COMMIT-KEY
 MOVE checkpoint-commit record length TO SAVE-AREA-LEN
 MOVE checkpoint-commit record TO SAVE-AREA-TEXT
 Update the CHECKPOINT_RESTART table with this information

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 5

#Batch Commit/Restart	 Version Date:7/1/2005

END-COMMIT

STEP5:	 Before STOP RUN statement; reset the RESTART flag of the

CHECKPOINT_RESTART table.

i.e. MOVE ‘N’ TO RESTART-IND
 Update the CHECKPOINT_RESTART table with the above information.

Sample COBOL code for CHECKPOINT/RESTART Logic:

CHECKPOINT-COMMIT RECORD DEFINITION:

 **

***** GLOBAL TEMPORARY TABLE CURSOR DECLARATION & OPEN *****

 EXEC SQL

DECLARE FPG-FPOS CURSOR FOR

SELECT RECORD_NUMBER

,RECORD_DETAIL

FROM FILE_POSITION_GTT

ORDER BY RECORD_NUMBER

END-EXEC.

**
***** CHECK-POINT RESTART DATA DEFINITIONS *****
**
01 COMMIT-REC.

02 FILLER PIC X(16) VALUE 'REC. PROCESSED: '.

02 COMMIT-KEY PIC 9(06) VALUE 0.

02 FILLER PIC X(14) VALUE 'TOTAL COUNTS: '.

02 COMMIT-COUNTS.

 03 WS-REC-READ PIC 9(06) VALUE 0.

 03 WS-REC-REJT PIC 9(06) VALUE 0.

 03 WS-REC-WRIT PIC 9(06) VALUE 0.

 03 WS-RECP-READ PIC 9(06) VALUE 0.

 03 WS-RECP-UPDT PIC 9(06) VALUE 0.

01 CHKPRSL-VARS.

02 RECORDS-PROCESSED-UOR PIC S9(09) COMP VALUE +0.

**
***** *****
***** CHECK POINT RESTART LOGIC SECTION *****
***** *****
**
RESTART-CHECK.

 MOVE 'XXXXXX ' TO PROGRAM-NAME.

PERFORM RESTART-SELECT.

 IF RESTART-IND = 'Y'

 MOVE SAVE-AREA-TEXT TO COMMIT-REC

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 6

#Batch Commit/Restart Version Date:7/1/2005

 If input is from cursor the skip until the commit-key

 If input is from file then skip the records until the commit-key

END-IF.

**
***** CHECK RESTART STATUS *****
**
RESTART-SELECT.

MOVE 0 TO RECORD-PROCESSED-UOR.

EXEC SQL

SELECT RESTART_IND

,COMMIT_FREQ

,RUN_TYPE

,SAVE_AREA

INTO :RESTART-IND

,:COMMIT-FREQ

,:RUN-TYPE

,:SAVE-AREA

FROM CHECKPOINT_RESTART

 WHERE PROGRAM_NAME = :PROGRAM-NAME

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

IF RESTART-IND = 'Y'
 DISPLAY '* *'
 DISPLAY ' ***PROGRAM - ' PROGRAM-NAME ' RESTARTED***'

 DISPLAY '* *'
DISPLAY ' '

END-IF

 WHEN 100

PERFORM RESTART-INSERT

 WHEN OTHER
MOVE 'RESTART-SELECT ' TO WS-PARA-NAME
MOVE 'CHECKPOINT_RESTART SELECT ERR' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.
/
**
***** INSERT THE NEW RESTART STATUS RECORD *****
**
RESTART-INSERT.

MOVE SPACES TO CALL-TYPE.
MOVE SPACES TO CHECKPOINT-ID.

 MOVE 'N' TO RESTART-IND.
 MOVE 'B' TO RUN-TYPE.
 MOVE +500 TO COMMIT-FREQ.
 MOVE ZEROES TO COMMIT-SECONDS.
 MOVE +4006 TO SAVE-AREA-LEN.

MOVE SPACES TO SAVE-AREA-TEXT.
EXEC SQL

INSERT INTO CHECKPOINT_RESTART

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 7

#Batch Commit/Restart Version Date:7/1/2005

(PROGRAM_NAME

,CALL_TYPE

,CHECKPOINT_ID

,RESTART_IND

,RUN_TYPE

,COMMIT_FREQ

 ,COMMIT_SECONDS

,COMMIT_TIME

,SAVE_AREA

)

VALUES

(:PROGRAM-NAME

,:CALL-TYPE

,:CHECKPOINT-ID

,:RESTART-IND

,:RUN-TYPE

,:COMMIT-FREQ

 ,:COMMIT-SECONDS

, CURRENT TIMESTAMP

,:SAVE-AREA

)

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

CONTINUE

 WHEN OTHER

MOVE 'RESTART-INSERT ' TO WS-PARA-NAME
MOVE 'CHECKPOINT_RESTART INSERT' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.
/
**
***** UPDATE THE CHECKPOINT RECORD *****
**
RESTART-COMMIT.

 MOVE 'Y' TO RESTART-IND.

EXEC SQL

UPDATE CHECKPOINT_RESTART
SET RESTART_IND = :RESTART-IND

,SAVE_AREA = :SAVE-AREA
,COMMIT_TIME = CURRENT TIMESTAMP

 WHERE PROGRAM_NAME = :PROGRAM-NAME

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

EXEC SQL COMMIT WORK END-EXEC
EVALUATE SQLCODE
WHEN 0

CONTINUE
WHEN OTHER

MOVE 'RESTART-COMMIT' TO WS-PARA-NAME
MOVE 'COMMIT ERROR' TO WS-PARA-MSG

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 8

#Batch Commit/Restart Version Date:7/1/2005

PERFORM EXCEPTION-ROUTINE

END-EVALUATE

MOVE 0 TO RECORD-PROCESSED-UOR

 WHEN OTHER
MOVE 'RESTART-COMMIT' TO WS-PARA-NAME
MOVE 'CHECKPOINT_RESTART UPDATE ERR' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.

***** RESET THE RESTART FLAG AT THE END OF PROGRAM *****

RESTART-RESET.

MOVE 0 TO RECORD-PROCESSED-UOR.

 MOVE 'N' TO RESTART-IND.

EXEC SQL

UPDATE CHECKPOINT_RESTART

SET RESTART_IND = :RESTART-IND

,COMMIT_TIME = CURRENT TIMESTAMP

 WHERE PROGRAM_NAME = :PROGRAM-NAME

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

EXEC SQL COMMIT WORK END-EXEC

 WHEN OTHER
MOVE 'RESTART-RESET' TO WS-PARA-NAME
MOVE 'CHECKPOINT_RESTART DELETE ERR' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.
/

***** *****
***** OUTPUT FILE REPOSITION LOGIC SECTION *****
***** *****
**

 **
***** GLOBAL TEMPORARY TABLE CURSOR DECLARATION & OPEN *****

FPG-OPEN.

EXEC SQL
OPEN FPG-FPOS

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

CONTINUE

 WHEN OTHER

MOVE 'FPG-OPEN' TO WS-PARA-NAME

MOVE 'GLOBAL TEMP TABLE OPEN ERR' TO WS-PARA-MSG

PERFORM EXCEPTION-ROUTINE

END-EVALUATE.

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 9

#Batch Commit/Restart Version Date:7/1/2005

***** GLOBAL TEMPORARY TABLE CURSOR FETCH *****

FPG-FETCH.

EXEC SQL

FETCH FPG-FPOS

INTO :FPG-RECORD-NUMBER

,:FPG-RECORD-DETAIL

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

CONTINUE

 WHEN +100
MOVE 0 TO FPG-RECORD-NUMBER

 WHEN OTHER
MOVE 'FPG-FETCH ' TO WS-PARA-NAME
 MOVE 'GLOBAL TEMP TABLE FETCH ERR' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.

**

***** GLOBAL TEMPORARY TABLE CURSOR CLOSE *****

**

FPG-CLOSE.

EXEC SQL
CLOSE FPG-FPOS

END-EXEC.

EVALUATE SQLCODE

 WHEN 0

MOVE 0 TO FPG-RECORD-NUMBER

 WHEN OTHER
MOVE 'FPG-FPOS-CLOSE ' TO WS-PARA-NAME
MOVE 'GLOBAL TEMP TABLE CLOSE ERR' TO WS-PARA-MSG
PERFORM EXCEPTION-ROUTINE

END-EVALUATE.

***** GLOBAL TEMPORARY TABLE INSERTS *****

FPG-INSERT.

ADD 1 TO FPG-RECORD-NUMBER.
EXEC SQL

INSERT INTO FILE_POSITION_GTT

(

RECORD_NUMBER
,RECORD_DETAIL

)

VALUES

(

:FPG-RECORD-NUMBER

,:FPG-RECORD-DETAIL

)

END-EXEC.

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 10

#Batch Commit/Restart Version Date:7/1/2005

EVALUATE SQLCODE

 WHEN 0

CONTINUE

 WHEN OTHER

MOVE 'FPG-INSERT ' TO WS-PARA-NAME

MOVE 'GLOBAL TEMP TABL INSERT ERR' TO WS-PARA-MSG

PERFORM EXCEPTION-ROUTINE

END-EVALUATE.
/
RESTART-FILE-REPOSITION.

OPEN INPUT outputfile-name.

MOVE LENGTH OF output-record TO FPG-RECORD-DETAIL-LEN.

READ output-file INTO FPG-RECORD-DETAIL-TEXT.

PERFORM UNTIL FPG-RECORD-NUMBER >= output record count of last commit

PERFORM FPG-INSERT
READ output-file INTO FPG-RECORD-DETAIL-TEXT

END-PERFORM.

CLOSE output-filename

OPEN OUTPUT outputfile-name.

PERFORM FPG-OPEN.

PERFORM FPG-FETCH.

PERFORM UNTIL FPG-RECORD-NUMBER = 0

WRITE outputfile-record FROM FPG-RECORD-DETAIL-TEXT
PERFORM FPG-FETCH

END-PERFORM.

PERFORM FPG-CLOSE.

---------skip input file until the last commit------------------

DISPLAY ' *** ALREADY ' COMMIT-KEY ' RECORDS PROCESSED ***'.

DISPLAY ' '

DISPLAY ' '.

 /

 ************** E X C E P T I O N R O U T I N E ****************

EXCEPTION-ROUTINE.

MOVE SQLCODE TO WS-SQL-RET-CODE.

 DISPLAY '***'.

 DISPLAY '**** E R R O R M E S S A G E S ****'.

 DISPLAY '***'.

 DISPLAY '* ERROR IN PARA.....: ' WS-PARA-NAME.

 DISPLAY '* MESSAGES.....: ' WS-PARA-MSG.

 DISPLAY '*'.

 DISPLAY '* SQL RETURN CODE..: ' WS-SQL-RET-CODE.

 DISPLAY '***'.

CALL CDCABEND USING ABEND-CODE.

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 11

#Batch Commit/Restart	 Version Date:7/1/2005

Output file Disposition in JCL:

♦ In JCL, disposition must be given as DISP=(NEW,CATLG,CATLG) or DISP=(OLD,KEEP,KEEP)
♦ Override statement is needed for the output files if job abended:

1. 	 GDG with DISP=(NEW,CATLG,CATLG)

Override stmt:

• 	 Change +1 generation to 0 (current) generation
• 	 DISP=(OLD,KEEP,KEEP)

2. GDG with DISP=(OLD,KEEP,KEEP)

Override stmt:

• 	 Change +1 generation to 0 (current) generation

Output file with Disposition MOD:

• 	 If output file is already existing, and program is appending records to that, then the File repositioning
must be handled in different way according to the requirements.

Internal Sort:

: If any Commit-Restart program has Internal Sort, remove it and have an External Sort.

U

POINTS TO REMEMBER

All the update programs must use COMMIT frequency
from the CHECKPOINT_RESTART table only

Avoid – Internal Sorts

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska
Confidential⌫ Page 12

8\Check-Restart Ravi.doc⌦State of Nebraska

#Batch Commit/Restart Version Date:7/1/2005

Avoid – Mass updates (Instead, use cursor with FOR
UPDATE clause and update one record at a time)

On-call analyst should back-up all the output files before
restart (The procedure should be documented in APCDOC)

Reports to dispatch should be sent to a flat file; send the file
to dispatch up on successful completion of the job

Save only the working storage variables that are required
for RESTART in the CHECKPOINT_RESTART table

RESET the RESTART_IND flag at the end of the program

If COMMIT-RESTART logic is introduced in an existing
program then make relevant changes to the PROCJCL.

Thought for the day

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C "Relationships
Confidential⌫ Page 13 and

Relational

#Batch Commit/Restart Version Date:7/1/2005

C:\DOCUME~1\sfifer\LOCALS~1\Temp\notes6030C8\Check-Restart Ravi.doc⌦State of Nebraska

Confidential⌫ Page 14

